A UNIQUENESS THEOREM FOR HAAR AND WALSH SERIES(1)

BY WILLIAM R. WADE

1. Introduction. It is well known that if a trigonometric series converges to an integrable function, except possibly in a countable set, and the series' coefficients converge to zero then that series is the Fourier series of the limit function [8, p. 329].

This problem for Walsh series was open for many years, but in 1965 two independent solutions were published: [2] and [3]. By combining the American and Soviet techniques we are able to obtain a theorem which contains the Walsh series result in [2] but which has a form similar to the theorem in [3]. Following the Soviet example, we will prove the result for Haar series and obtain the Walsh series result as a corollary.

In this paper E will represent a countable subset of [0, 1], and D.R. will represent the set of dyadic rationals. Given a Borel set A, $I_A(x)$ will denote the characteristic function of the set A.

The Haar system $\{\chi_k\}_{k=0}^{\infty}$ is defined as $\chi_0(x)=1$, $\chi_1(x)=I_{[0, 1/2)}(x)-I_{(1/2, 1)}(x)$; in general writing $k'=2^n+k$, $0 \le k < 2^n$ where n is the largest power of 2 which is less than or equal to k', we define

$$\chi_k(x) = \chi_n^{(k)}(x) = (2^n)^{1/2} \quad 2k - 2/2^{n+1} < x < 2k - 1/2^{n+1},$$

$$= -(2^n)^{1/2} \quad 2k - 1/2^{n+1} < x < 2k/2^{n+1},$$

$$= (2^n/4)^{1/2} \qquad x = k - 1/2^n,$$

$$= -(2^n/4)^{1/2} \qquad x = k/2^n,$$

$$= 0 \qquad \text{otherwise.}$$

We will denote

$$(2k-2/2^{n+1}, 2k-1/2^{n+1}) = \Delta_{k'}^{(1)}, \qquad (2k-1/2^{n+1}, 2k/2^{n+1}) = \Delta_{k'}^{(2)}$$

and these two open intervals will be referred to as the positive (respectively negative) support of the kth Haar function. Alexits [1] proves this sequence is a complete orthonormal system.

We define the Walsh system $\{\Psi_k\}_{k=0}^{\infty}$ by letting $\Phi_0(x) = I_{[0, 1/2)}(x) - I_{[1/2, 1]}(x)$, $\Phi_n(x) = \Phi_0(2^n x)$ (where Φ_0 is extended by periodicity of period 1) and then defining $\Psi_0(x) = 1$, $\Psi_n(x) = \Phi_{n_1}(x) \cdots \Phi_{n_r}(x)$ where $n = \sum_{i=1}^r 2^{n_i}$ and the n_i are uniquely

Received by the editors October 1, 1968.

⁽¹⁾ This research was done in partial satisfaction for the Doctor of Philosophy degree at the University of California, Riverside, under the direction of Professor Victor L. Shapiro.

determined by $n_{i+1} < n_i$. Walsh [7] proves this sequence is a complete orthonormal system.

Both the Walsh and Haar systems are extended by periodicity of period 1 to the whole real line. Kacmarzc noted [1, p. 62] that if $k' = 2^n + k$, $0 \le k < 2^n$ and n largest such that $2^n \le k'$, then

(1)
$$\Psi_{k'}(x) = \frac{1}{(2^n)^{1/2}} \sum_{j=1}^{2^n} \varepsilon_{k'j} \chi_n^{(j)}(x) \quad \text{for } x \notin D.R.$$

where $\varepsilon_{jk'} = \pm 1$ and the matrix $[\varepsilon_{jk'}]$ has orthogonal rows. If S is a Haar or Walsh series, S_n will denote the partial sum of order n-1.

Given a Haar series $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$, we shall say S satisfies condition G if for every $x_0 \in [0, 1]$,

$$\lim_{j \to \infty} \frac{a_{k_j}}{\chi_{k_j}(x_0)} = 0$$

where k_j are all those integers p for which $\chi_p(x_0) \neq 0$. We note that this growth condition is essential to Theorem 1 since

$$\chi_0(x) + \sum_{n=0}^{\infty} (2^n)^{1/2} \chi_{2^n}(x) \equiv 0$$
 on $(0, 1]$

but the series fails to satisfy (2) only at the point $x_0 = 0$.

We shall say a function g is in the class $\mathscr A$ if there is a closed countable set $A_g \subseteq [0, 1]$ such that g is locally integrable in $(0, 1) \sim A_g$. We note that $L^1[0, 1]$ is a proper subset of $\mathscr A$ since $A_{(1/x)} = \{0\}$.

We shall prove:

THEOREM 1. Let $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ be a Haar series satisfying condition G such that for some function $g \in \mathcal{A}$ and subsequence of natural numbers $\{n_i\}$

- (i) $\lim_{j\to\infty} S_{2^{n_j}}(x) = g(x)$ in measure;
- (ii) $\limsup_{i\to\infty} |S_{2^{n_i}}(x)| < \infty, x \notin E$;
- (iii) $\limsup_{t\to\infty} S_{2^n t}(x)$ dominates an integrable function f(x) for $x \notin E$.

Then g is integrable and S is the Haar Fourier series of g.

THEOREM 2. Let $S(x) = \sum_{k=0}^{\infty} a_k \Psi_k(x)$ be a Walsh series such that for a function $g \in \mathcal{A}$ and some subsequence of natural numbers $\{n_j\}$

- (i) $\lim_{j\to\infty} S_{2^{n_j}}(x) = g(x)$ in measure;
- (ii) $\limsup_{t\to\infty} |S_{2^{n_t}}(x)| < \infty \text{ for } x \notin E$;
- (iii) $\limsup_{j\to\infty} S_{2^{n_j}}(x)$ dominates an integrable function f(x) for $x \notin E$;
- (iv) $\lim_{k\to\infty} a_k = 0$.

Then g is integrable and S is the Walsh Fourier series of g.

2. Fundamental lemmas. By $\alpha_n = \alpha_n(x)$ and $\beta_n(x) = \beta_n$ we shall mean

(3)
$$\alpha_n = P \cdot 2^{-n} \le x < (P+1)2^{-n} = \beta_n$$

and $\alpha'_n(x) = \alpha_n(x)$ if $x \notin D.R.$, $\alpha'_n(x) = \alpha_n(x) - 2^{-n}$ otherwise. Given a Haar series $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ we define

(4)
$$L(S, x, n_j) = \lim_{j \to \infty} \sum_{k=0}^{2^{n_j}-1} a_k \int_0^x \chi_k(u) du = \lim_{j \to \infty} L_{2^{n_j}}(S, x)$$

when this limit exists. In case L(S, x, n) exists we will write it as L(S, x) following the notation in [5].

LEMMA 1. If $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ is a Haar series satisfying condition G, then for every x and $n \ge 0$ both $L(S, \alpha_n(x))$ and $L(S, \beta_n(x))$ exist and are finite. Furthermore

(5)
$$L(S, \beta_n(x)) - L(S, \alpha_n(x)) = 2^{-n} S_{2^n}(x),$$

(6)
$$L(S, \beta_n(x)) - L(S, \alpha_n(x)) = o(1) \quad as \quad n \to \infty.$$

Proof. We use [3, Lemma 1] as an outline of the proof of this lemma. To show (6), we use (5) and the fact that condition G implies $2^{-n}S_{2^n}(x) = o(1)$.

To see this, given $\varepsilon > 0$ and $x_0 \in [0, 1]$ we choose N sufficiently large so that $j \ge N$ implies

$$|a_{k_i}| < \varepsilon \cdot |\chi_{k_i}(x_0)|$$

where k_j are defined in the definition of condition G. We then recall from the very definition of the Haar functions that the set

(8)
$$\{\chi_k^{(1)}(x_0), \, \chi_k^{(2)}(x_0), \, \dots, \, \chi_k^{(2^k)}(x_0)\}$$

has at most two nonzero elements for each k, and that $|\chi_k^{(p)}(x_0)|^2 \le 2^k$.

Combining (7) and (8) if n > N,

(9)
$$\left| \frac{S_{2^n}(x_0)}{2^n} \right| \leq \sup_{0 \leq j \leq N} \frac{|a_{kj}| \cdot N}{(2^n)^{1/2}} + 2\varepsilon \cdot \frac{\sum_{k=0}^{n} 2^k}{2^n} .$$

Hence taking $\limsup of (9)$ as $n \to \infty$ we obtain $S_{2^n}(x_0) = o(2^n)$.

The following lemma is the Haar series analogue of a lemma in [3], and the proof is essentially the same.

LEMMA 2. If $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ is a Haar series satisfying condition G and if $L(S, x, n_i)$ exists and is finite, then

(10)
$$L(S, \alpha'_{n_j}) \to L(S, x, n_j) \quad as \ j \to \infty,$$

(11)
$$L(S, \beta_{n_j}) \to L(S, x, n_j) \quad as \ j \to \infty.$$

The following lemma is proved in a similar manner to Lemma 3 of [3].

LEMMA 3. Let G(x) be defined in a < x < b and satisfy:

- (i) Except perhaps on a countable set Z, $\liminf_{j\to\infty} 2^{n_j} [G(\beta_{n_j}) G(\alpha_{n_j})] \leq 0$.
- (ii) For all $x \in (a, b)$, both $G(\alpha'_{nj}) \to G(x)$, $G(\beta_{nj}) \to G(x)$ as $j \to \infty$.

Then G(x) is monotone nonincreasing in (a, b).

LEMMA 4. Let $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ be a Haar series satisfying condition G, let f be a finite valued function, integrable over $(a-\varepsilon,b+\varepsilon)$ for $\varepsilon>0$, and let $\{n_j\}$ be a subsequence of the natural numbers. Suppose further that Z is a countable subset of $(a-\varepsilon,b+\varepsilon)$ and that

- (i) $L(S, x, n_i)$ exists and is finite for every $x \in (a \varepsilon, b + \varepsilon)$;
- (ii) $+\infty > \limsup_{j\to\infty} S_{2^{n_j}}(x) \ge f(x)$ for $x \notin Z$.

Then

(12)
$$\limsup_{j\to\infty} S_{2^n j}(x) = \liminf_{j\to\infty} S_{2^n j}(x) \quad a.e. \text{ in } (a,b)$$

and this function is integrable over (a, b).

Proof. From hypothesis (ii) and (5) we have

(13)
$$\limsup_{j\to\infty} 2^{n_j} [L(S,\beta_{n_j}) - L(S,\alpha_{n_j})] \ge f(x) \quad \text{for } x \in (a-\varepsilon,b+\varepsilon) \sim Z.$$

Using the Vitali-Carathéodory Theorem [5, p. 75] we choose an upper semi-continuous function $f_1 \le f$ in $L^1(a-\varepsilon, b+\varepsilon)$.

Let
$$F_1(x) = \int_{a-\varepsilon/2}^x f_1(u) \ du$$
 for $x \in (a-\varepsilon/2, b+\varepsilon)$. Clearly since $|\alpha_{n_j} - \beta_{n_j}| = 2^{-n_j}$,
$$\lim_{t \to \infty} \inf 2^{n_j} [F_1(\beta_{n_j}) - F_1(\alpha_{n_j})] \le f(x) \quad \text{for } x \in (a-\varepsilon/2, b+\varepsilon).$$

Thus by (13), for $x \in (a - \varepsilon/2, b + \varepsilon) \sim Z$,

(14)
$$\liminf_{j \to \infty} 2^{n_j} \{ F_1(\beta_{n_j}) - L(S, \beta_{n_j}) - [F_1(\alpha_{n_j}) - L(S, \alpha_{n_j})] \} \leq 0.$$

Now Lemma 2 and continuity of F_1 imply hypothesis (ii) of Lemma 3 is also satisfied by the function $F_1(x) - L(S, x, n_j)$, so by Lemma 3 this function is monotone nonincreasing in $(a - \varepsilon/2, b + \varepsilon)$.

Thus $L(S, x, n_i)$ has derivatives almost everywhere which are integrable on every closed subinterval of $(a - \varepsilon/2, b + \varepsilon)$. Hence (12) is a consequence of the equality

(15)
$$\frac{L(S, \beta_{n_j}) - L(S, \alpha_{n_j})}{\beta_{n_j} - \alpha_{n_j}} = S_{2^{n_j}}(x).$$

LEMMA 5. If $S'(x) = \sum_{k=0}^{\infty} c_k \chi_k(x)$ is the Haar Fourier series of an integrable function f(x) then

(16)
$$S'$$
 satisfies condition G ,

(17)
$$\lim_{n \to \infty} \int_{0}^{1} |S'_{n}(x) - f(x)| dx = 0.$$

Proof. By assumption $c_k = \int_0^1 f(x)\chi_k(x) dx$. Thus

$$|c_k| \leq \max_{x} |\chi_k(x)| \left\{ \int_{\Delta_k^{(1)} \cup \Delta_k^{(2)}} |f(x)| dx \right\}.$$

But f is integrable, so $m(\Delta_k^{(1)} \cup \Delta_k^{(2)}) \to 0$ implies

$$\frac{|c_k|}{\max_{x}|\chi_k(x)|} \to 0 \quad \text{as } k \to \infty.$$

But if $\chi_k(x_0) \neq 0$ then $|\chi_k(x_0)| \ge \frac{1}{2} \max_x |\chi_k(x)|$ so (16) is proved. (17) is the theorem appearing in [6].

We quote the main lemma of [2].

LEMMA 6. Suppose $S(x) = \sum_{k=0}^{\infty} a_k \chi_k(x)$ is a Haar series satisfying condition G and f is an integrable function whose Haar Fourier series is $S'(x) = \sum_{k=0}^{\infty} c_k \chi_k(x)$. Suppose also that for some subsequence of natural numbers $\{n_j\}$, $S_{2^{n_j}}(x)$ converges to f(x) in measure.

Let $x_0 \in [0, 1]$ and k_0 be an integer such that

- (a) inside $\Delta_{k_0}^{(i_0)}$, $i_0 = 1$ or 2, $S_{k_0+1}(x)$, $S'_{k_0+1}(x)$ have different constant values,
- (β) $k > k_0$ implies χ_k is nonzero either in $\Delta_{k_0}^{(i_0)}$ or outside it.

Then for any M>0 and any positive integer N we can find an n_j , a natural number p and an interval of the form $\Delta_p^{(i_p)}$, $i_p=1$ or 2 such that

- (1) $2^{n_j} > N$,
- (2) $x_0 \notin \Delta_p^{(i_p)^-}$ and $\Delta_p^{(i_p)^-} \subseteq \Delta_{k_0}^{(i_0)}$,
- (3) $|S_{2^{n_i}}(x)| > M$ for $x \in \Delta_p^{(i_p)}$ and is constant there,
- (4) p, $\Delta_p^{(i_p)}$ satisfy (α) , (β) .

We close this section by recalling a theorem of Vitali [4, p. 152].

LEMMA 7. If $\{u_n\}_{n=0}^{\infty}$ is a sequence of functions which have equiabsolutely continuous integrals; i.e., given $\varepsilon > 0$ there is a δ such that for $E \subseteq [0, 1]$, $m(E) < \delta$ implies

$$\left| \int_{E} u_{n}(x) \ dx \right| < \varepsilon \quad \text{for all } n;$$

and if $u_n(x) \to f(x)$ in measure, then f(x) is integrable and

$$\lim_{n\to\infty}\int_0^1 u_n(x)\ dx = \int_0^1 f(x)\ dx.$$

3. **Proof of Theorem 1.** Since $g \in \mathcal{A}$, given $x_0 \notin A_g$ we can find an interval of the form $\Delta_{j_0}^{(i)}$ containing x_0 such that $\Delta_{j_0}^{(i)} \cap A_g = \emptyset$, and g is integrable over $\Delta_{j_0}^{(i)}$. We claim that $L(S, x_0, n_j)$ exists and is finite. By Lemma 1, we may assume x_0 is not a dyadic rational.

Consider the function

(18)
$$g^*(x) = [g(x) - S_{j_0+1}(x)]I_{\Delta_{j_0}^{(i)}}(x).$$

By choice of j_0 , g^* is integrable in [0, 1]. By hypothesis (i), $S_{2^{n}j}(x)I_{\Delta_{j_0}^{(i)}}(x) \to g(x)$ $I_{\Delta_{j_0}^{(i)}}(x)$ in measure, so if we define

(19)
$$T(x) = [S(x) - S_{t_0+1}(x)]I_{\Delta_{t_0}^{(t)}}(x)$$

we have by (18)

(20)
$$\lim_{t \to \infty} T_{2^n t}(x) = g^*(x) \quad \text{in measure.}$$

We note that T is actually a Haar series, say $T(x) = \sum_{k=0}^{\infty} \alpha_k \chi_k(x)$, and since $|\alpha_k| \le |a_k|$, T satisfies condition G. Let $S'(x) = \sum_{k=0}^{\infty} c_k \chi_k(x)$ be the Haar Fourier series of g^* . We claim S' and T are the same series.

Suppose not, and let k_0 be the least integer for which $\alpha_{k_0} \neq c_{k_0}$. Clearly $T_{k_0+1}(x) = -S'_{k_0+1}(x) \equiv d$ in $\Delta_{k_0}^{(i_0)}$ where d is a nonzero constant and $i_0 = 1$ or 2.

Let $E \cup D.R. = \{Z_1, Z_2, ...\}$; we use Lemma 6 countably many times to obtain sequences $\{n_{j_k}\}_{k=1}^{\infty}, \{p_k\}_{k=1}^{\infty}$ such that

(21)
$$Z_k \notin \Delta_{p_k}^{(i_{p_k})^-} \subset \Delta_{p_{k-1}}^{(i_{p_k-1})}$$
 for $k = 2, 3, \ldots,$

(22)
$$|T_{2^{n_{j_k}}}(x)| > k \text{ for } x \in \Delta_{n_k}^{(i_{p_k})}, \quad k = 1, 2, \dots$$

Since the dyadic rationals are excluded from the nested sequence $\Delta_{p_k}^{(i_{p_k})}$, $m(\Delta_{p_k}^{(i_{p_k})})$ tends to zero as $k \to \infty$. By (21) we let $\xi \in \bigcap_{k=1}^{\infty} \Delta_{p_k}^{(i_{p_k})}$. Then by (22),

$$\limsup_{k\to\infty} |S_{2^{n_{j_k}}}(\xi)| = \infty$$

which implies by hypothesis (ii) that $\xi \in E \subseteq \{Z, Z_2, ...\}$ which contradicts (21). Thus the assumption was false and $S' \equiv T$.

Thus by (19), if $n>j_0+1$ and $x\in\Delta_{j_0}^{(i)}$,

(23)
$$S_n(x) = T_n(x) + S_{j_0+1}(x).$$

Since T is a Fourier series and S_{j_0+1} is a polynomial we use (17) and hypothesis (i) to see S_n satisfies the hypotheses of Lemma 7 inside $\Delta_{j_0}^{(i)}$. Choose $\rho \in D.R. \cap \Delta_{j_0}^{(i)}$ to the left of x_0 , and use Lemma 7 to obtain

$$L(S, x_0, n_j) - L(S, \rho) = \lim_{j \to \infty} \int_{\rho}^{x_0} S_{2^{n_j}}(u) du$$
$$= \int_{\rho}^{x_0} g(u) du < \infty$$

since $(\rho, x_0) \subseteq \Delta_{j_0}^{(i)}$. But by Lemma 1, $L(S, \rho)$ is finite and thus $L(S, x_0, n_j)$ exists and is finite. The claim is thus true.

Let $N = \{x \in (0, 1) \mid L(S, x, n_j) \text{ does not exist}\}$. By our claim $N \subseteq A_g$. If we can show that N has no isolated points, then $\overline{N} \subseteq (A_g)^- = A_g$ would be a perfect countable set, which would force N to be empty. But by (4) and orthogonality of the Haar functions L(S, 0) = 0, $L(S, 1) = a_0$, and so we will have shown that $L(S, x, n_j)$ exists and is finite everywhere in [0, 1].

Suppose indeed that N has an isolated point x_0 . Then for numbers 0 < a < c < d < b < 1, $L(S, x, n_j)$ exists and is finite in $[c, x_0) \cup (x_0, d]$. Choose f_1 by the Vitali-Carathéodory Theorem as in Lemma 4, and define $F_1(x) = \int_0^x f_1(u) du$. Using (15), Lemma 2, hypothesis (ii), and continuity of F_1 ,

(24)
$$\liminf_{j \to \infty} 2^{n_j} \{ F_1(\beta_{n_j}) - L(S, \beta_{n_j}) - [F(\alpha_{n_j}) - L(S, \alpha_{n_j})] \} \leq 0 \quad \text{for } x \notin E,$$

(25)
$$F_{1}(\alpha'_{n_{j}}) - L(S, \alpha'_{n_{j}}) \to F_{1}(x) - L(S, x, n_{j}), \\ F_{1}(\beta_{n_{j}}) - L(S, \beta_{n_{j}}) \to F_{1}(x) - L(S, x, n_{j}).$$

Thus by Lemma 3, $F_1(x) - L(S, x, n_j)$ is monotone nonincreasing in each of the intervals (c, x_0) , (x_0, d) . But F_1 is continuous so $L(S, x, n_j)$ has a right and left limit (in the extended real plane) as $x \to x_0$. By (6) these limits must be equal, and by monotonicity they are finite. Thus by using (4), and the fact that the first 2^{n_j} Haar functions are constant in $(\alpha_{n_j}, \beta_{n_j})$

$$|L_{2^{n_{j}}}(S, x_{0}) - L_{2^{n_{j}}}(S, \alpha_{n_{j}})| = \left| \int_{\alpha_{n_{j}}}^{x_{0}} S_{2^{n_{j}}}(u) du \right|$$

$$= |(x_{0} - \alpha_{n_{j}}) \cdot S_{2^{n_{j}}}(x_{0})|$$

$$\leq \frac{|S_{2^{n_{j}}}(x_{0})|}{2^{n_{j}}} = o(1)$$

by (9). Thus $L_{2^{n_j}}(S, x_0) = L(S, \alpha_{n_j}) + o(1)$ which implies $L(S, x_0, n_j)$ exists and is finite, and we have proved N has no isolated points.

By periodicity of the Haar functions we conclude that $L(S, x, n_j)$ exists and is finite for all real x. Hence using Lemma 4 we conclude $g \in L^1[-1/2, 3/2]$ and $S_{2^{n_j}}(x) \rightarrow g(x)$ almost everywhere.

We now proceed as we did locally for g^* . If the Haar Fourier series of the integrable function g(x) is not identically equal to the series S, then using Lemma 6 countably many times we conclude the E is uncountable contrary to hypothesis. Thus S is the Haar Fourier series of the function g and Theorem 1 is established.

4. **Proof of Theorem 2.** Using (1) and defining

(26)
$$\alpha_k = \alpha_n^{(k')} = \sum_{i=2n}^{2^{n+1}-1} \frac{\varepsilon_{ik}}{(2^n)^{1/2}} a_i,$$

we see that the Haar series

$$T(x) = \sum_{k=0}^{\infty} \alpha_k \chi_k(x)$$

satisfies

$$T_{2^n}(x) = S_{2^n}(x)$$
 for $x \notin D.R$.

Thus the Haar series T satisfies hypotheses (i), (ii) and (iii) of Theorem 1, for the countable set $E \cup D.R$. We now claim that hypothesis (iv) implies T satisfies condition G. To see this use (26) to obtain

$$\left|\alpha_n^{(k)}\right| \leq (2^n)^{1/2} \max_{2^n \leq i < 2^{n+1}} |a_i|.$$

But by definition of the Haar functions, $\max_{x} |\chi_n^{(k)}(x)| = (2^n)^{1/2}$, so we use the argument in Lemma 5 to conclude T satisfies *condition* G.

Thus by Theorem 1, g is integrable, and T is its Haar Fourier series. We now observe that (26) implies

(28)
$$a_k = \sum_{i=2n}^{2^{n+1}-1} \frac{\varepsilon_{ik}}{(2^n)^{1/2}} \alpha_i.$$

Hence by (1), (28) and Theorem 1,

$$a_k = \sum_{i=2^n}^{2^{n+1}-1} \frac{\varepsilon_{ik}}{(2^n)^{1/2}} \int_0^1 g(x) \chi_i(x) \, dx$$
$$= \int_0^1 g(x) \sum_{i=2^n}^{2^{n+1}-1} \frac{\varepsilon_{ik} \chi_i(x)}{(2^n)^{1/2}} \, dx$$
$$= \int_0^1 g(x) \Psi_k(x) \, dx$$

which means that S is the Walsh Fourier series of the integrable function g.

REFERENCES

- 1. G. Alexits, Convergence problems of orthogonal functions, transl. by I. Földes, Pergamon Press, New York, 1961.
- 2. F. G. Arutunjan and A. A. Talaljan, On uniqueness of Haar and Walsh series, Izv. Akad. Nauk SSSR 28 (1964), 1391-1408. (Russian)
- 3. R. B. Crittenden and V. L. Shapiro, Sets of uniqueness on the group 2^{ω} , Ann. of Math. 81 (1965), 550-564.
- 4. I. N. Natanson, *Theory of functions of a real variable*, transl. by L. F. Boron, Ungar, New York, 1955.
 - 5. S. Saks, Theory of the integral, Hafner, New York, 1937.
 - 6. J. Schauder, Eine Eigenschaft des Haarshen Orthogonalsystems, Math. Z. 28 (1928), 317-320.
 - 7. J. L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 55 (1923), 5-24.
 - 8. A. Zygmund, Trigonometric series, Vol. I, Cambridge Univ. Press, Cambridge, 1959.

University of Tennessee, Knoxville, Tennessee University of California, Riverside, California